All for Joomla The Word of Web Design


      [1] Abohamama, A. S., Alrahmawy, M. F., & Elsoud, M.A. (2018). Improving the dependability of cloud environment for hosting real time applications. Ain        Shams Engineering Journal, 9(4), 3335-3346.

      [2] Alharbi, F., Tian, Y. C., Tang, M., Zhang, W. Z.,   Peng, C., & Fei, M. (2019). An ant colony system for energy-efficient dynamic virtual machine placement in data centers. Expert Systems with Applications,        120, 228-238.

      [3] Tang, M., & Pan, S. (2015). A hybrid genetic        algorithm for the energy-efficient virtual machine        placement problem in data centers. Neural       Processing Letters,41(2), 211-221.

      [4] Zhihao Peng, Behnam Barzegar, Maryam Yarahmadi, Homayun Motameni, Poria Pirouzmand, “Energy-Aware Scheduling of Workflow Using a Heuristic Method on Green Cloud”, Scientific Programming, vol. 2020, Article ID 8898059, 14 pages, 2020.

      [5] Speitkamp, B., & Bichler, M. (2010). A mathematical programming approach for server consolidation problems in virtualized data centers. IEEE Transactions on services computing, 3(4), 266-278.

     [6] Behnam Barzegar, Homayun Motameni and Ali Movaghar, “EATSDCD: A green energy-aware scheduling algorithm for parallel task-based application using clustering, duplication and DVFS technique in cloud datacenters”, Journal of Intelligent & Fuzzy Systems 36, IOS Pres, Volume 36, Issue 6, pages 5135–5152,  2019.

      [7] Yan, J., Zhang, H., Xu, H., & Zhang, Z. (2018). Discrete PSO-basedworkload ptimization in virtual machine placement. Personal and Ubiquitous Computing, 22(3), 589-596.

      [8] Abdel-Basset, M., Abdle-Fatah, L., & Sangaiah, A. K.(2018). An improved Lévy based whale optimization Algorithm for bandwidth-efficient virtual machine placement in cloud computing environment.Cluster       Computing,

      [9] Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony system algorithm for Virtual Machine placement in cloud computing.       Journal of Computer and System Sciences, 79(8),      1230-1242.

     [10] Foo, Y. W., Goh, C., Lim, H. C., Zhan, Z. H., & Li,Y. (2015). Evolutionary neural network based energy      consumption forecast for cloud computing. In 2015       International Conference on Cloud Computing      Research and Innovation (ICCCRI) (pp. 53-64). IEEE.

     [11] Wang, S., Gu, H., & Wu, G. (2013). A new approach to multi-objective virtual machine placement in          virtualized data center. In 2013 IEEE Eighth         International Conference on Networking,        Architecture and Storage (pp. 331-335). IEEE.

    [12] Wang, S., Liu, Z., Zheng, Z., Sun, Q., & Yang, F.        (2013). Particle swarm optimization for energyaware         virtual machine placement optimization in virtualized         data centers. In 2013 International Conference on         Parallel and Distributed Systems (pp. 102-109). IEEE.

    [13] Alresheedi, S. S., Lu, S., Elaziz, M. A., & Ewees, A. A. (2019). Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing. Human-centric Computing and Information Sciences, 9(1), 15.


    [14] Liu, X. F., Zhan, Z. H., Deng, J. D., Li, Y., Gu, T., & Zhang, J. (2018). An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Transactions on Evolutionary Computation, 22(1), 113-128.


    [15] Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future generation computer systems, 28(5), 755-768.

بدون دیدگاه

ارسال دیدگاه

ورود به سایت

خوش آمدید! وارد حساب کاربری خود شوید

بخاطر بسپار فراموشی رمز عبور ؟

آیا حساب کاربری ندارید.؟ عضویت

Lost Password